The First Synthesis of a Fully Functionalized Core Structure of Staurosporine: Sequential Indolyl Glycosidation by Endo and Exo Glycals

J. T. Link, Michel Gallant, and Samuel J. Danishefsky

Department of Chemistry Yale University New Haven, Connecticut 06511-8118

Susan Huber

Center for Chemical Instrumentation Yale University New Haven, Connecticut 06511-8118

Received January 27, 1993

Staurosporine (1), isolated by Omura and co-workers from Streptomyces staurosporeus, is one of the most potent known inhibitors of protein kinase C.1 It also inhibits other protein kinases in nanomolar concentrations by binding to their conserved catalytic regions.² Our interest in staurosporine arose from two considerations. First, its unusual structure invites interesting solutions for its total synthesis. 3,4 Furthermore, synthetic mastery of the system could provide specific inhibitors of protein phosphorylation. Such specificity is important for the application of protein kinase inhibitors as useful drugs for intervention at the level of signal transduction.

The chief structural challenge posed by staurosporine (1) is the construction of the two N-glycosidic linkages which anchor the amino sugar to the indolocarbazole matrix. Another synthetic consideration involves correlating the regiochemical dissymmetry between the remote carbohydrate and unsaturated lactam sectors. The strategy we envisioned contemplated twofold glycosidative coupling between indolocarbazole 2 and bis enol ether 3 en route to 1 (Scheme I). In its pristine sense, such an approach raises obvious questions of regiochemical control not to speak of gross feasibility. Herein we describe the realization of the overall logic of this scheme by a more methodical approach.

The components presented for the first encounter of the aglycone and carbohydrate sectors were the bis(indolyl) system 4 and the glycal 9. Compound 4 was synthesized according to protocols developed in our recent total synthesis of rebeccamycin.5

(1) (a) Omura, S.; Iwai, Y.; Hirano, A.; Nakagawa, A.; Awaya, J.; Tsuchiya, H.; Takahashi, Y.; Masuma, R. J. Antibiot. 1977, 30, 275. (b) Furusaki, A.; Hashiba, N.; Matsumoto, T. J. Chem. Soc., Chem. Commun. 1978, 800. (c) Furusaki, A.; Hashiba, N.; Matsumoto, T.; Hirano, A.; Ivai, Y.; Omura, S. Bull. Chem. Soc. Jpn. 1982, 55, 3681. (d) Tamaoki, T.; Nomoto, H.; Takahashi, I.; Kato, Y.; Morimoto, M.; Tomita, F. Biochem. Biophys. Res. Commun. 1986, 135, 397

(2) (a) Tamaoki, T.; Nakano, H. Biotechnology 1990, 8, 732. (b) Nakano, H.; Kobayashi, E.; Takahashi, I.; Tamaoki, T.; Kuzuu, Y.; Iba, H. J. Antibiot. 1987, 40, 706. (c) Badwey, J. A.; Erickson, R. W.; Curnutte, J. T. Biochem. Biophys. Res. Commun. 1991, 178, 423. (d) Fujita-Yamaguchi, Y.; Kathuria, S. Biochem. Biophys. Res. Commun. 1988, 157, 955

(3) Attempted total syntheses: (a) Winterfeldt, E. In Heterocycles in Bio-Organic Chemistry; Bergman, J., Ed.; The Royal Society of Chemistry: London, 1991; pp 18–27. (b) Weinreb, S. M. Heterocycles 1984, 21, 309. (c) Joyce, R.; Gainor, J.; Weinreb, S. M. J. Org. Chem. 1987, 52, 1177.

(4) Aglycone synthetic studies: (a) Sarstedt, B.; Winterfeldt, E. Heterocycles 1983, 20, 469. (b) Magnus, P. D.; Exon, C.; Sear, N. Tetrahedron

1983, 39, 3725. (c) Hughes, I.; Raphael, R. A. Tetrahedron Lett. 1983, 24, 1441. (d) Hughes, I.; Nolan, W. P.; Raphael, R. A. J. Chem. Soc., Perkin Trans. I 1990, 2475. (e) Davis, P. D.; Bit, R. A.; Hurst, S. A. Tetrahedron Lett. 1990, 31, 2353. (f) Davis, P. D.; Bit, R. A. Tetrahedron Lett. 1990, 31, 5201. (g) Bergman, J. Chem. Scr. 1986, 27, 539. (h) Bergman, J.; Pelcman, B. Tetrahedron Lett. 1987, 28, 4441. (i) Bergman, J.; Pelcman, B. J. Org. Chem. 1989, 54, 824. (j) Moody, C. J.; Rahimtoola, K. F. J. Chem. Soc., Chem. Commun. 1990, 1667. (k) Moody, C. J.; Rahimtoola, K. F. J. Org. Chem. 1992, 57, 2105. (1) Steglich, W. Pure Appl. Chem. 1989, 61, 281. (m) Gribble, G. W.; Berthel, S. J. Tetrahedron 1992, 41, 8869. (n) Somei, M.; Kodama, A. Heterocycles 1992, 34, 1285

(5) Gallant, M.; Link, J. T.; Danishefsky, S. J. J. Org. Chem. 1993, 58, 343.

Scheme I

Scheme IIa

^a (a) NaH, CH₂Cl₂, 0 °C, then Cl₃CCN, 0 °C \rightarrow rt. (b) BF₃·OEt₂, -78 °C, 78%. (c) Cat. TsOH, H₂O, pyr, 80 °C, 80%. (d) NaH, CH₂Cl₂, 0 °C → rt, then DMF, BnBr, 0 °C → rt, 94%. (e) TBAF, THF, 0 °C \rightarrow rt, 96%. (f) NaH, DMF, 0 °C \rightarrow rt, then PMBCl, 0 °C \rightarrow rt, 97%. (g) Dimethyldioxirane, CH₂Cl₂, 0 °C, mixture of isomers, quantitative.

An interesting and concise route to 9 began with readily available glucal 5.6 Thus, treatment of 5 with sodium hydride and trichloroacetonitrile generated an intermediate which, upon treatment with BF₃·OEt₂, gave rise to oxazoline 7. We suspect the intermediate to be the 3,4-bis(acetimidate) 6, which reacts by what can be viewed as a vinylogous intramolecular Schmidt glycosidation. Conversion of 7 to 9 proceeded as shown in Scheme

Treatment of endo glycal 9 with 2,2-dimethyldioxirane generated the corresponding 1,2-anhydro sugars as a mixture of diastereomers.⁸ This material, enriched in β -epoxide 10, was treated with the sodium anion of 4 (Scheme III) to afford a 48% yield of 11 (as well as approximately 8% of the product arising from glycosidation of the α -epoxide).⁵ Deoxygenation of 11 produced the 2-deoxy-β-indolocarbazolyl glycoside 12.9 It was at this stage that the 2,2'-bis(indolyl) bond was fashioned by photocyclization.3a,4a,10 Unveiling the exo glycal equivalent of 2 was accomplished by oxidative cleavage of the p-methoxybenzyl group of 13, conversion to iodide 15, and treatment with DBU which, after indolocarbazole deprotection, yielded 16.

H NMR analysis indicated that the bulky indolocarbazole moiety of 16 adopts an equatorial orientation which is not conducive to the required 7-exo cyclization. Indeed, a variety of attempts to accomplish an electrophilically triggered cyclization failed and served to identify the vulnerability of the glycosidic bond. However, success was eventually achieved by sequential treatment of 16 with potassium tert-butoxide at room temperature

⁽⁶⁾ Gordon, D. M.; Danishefsky, S. J. J. Am. Chem. Soc. 1992, 114, 659.

⁽⁷⁾ Schmidt, R. R. Angew. Chem., Int. Ed. Engl. 1986, 25, 212

^{(8) (}a) Halcomb, R. L.; Danishefsky, S. J. J. Am. Chem. Soc. 1989, 111, 6661. (b) Friesen, R. W.; Danishefsky, S. J. J. Am. Chem. Soc. 1989, 111, 6656. (c) Gordon, D. M.; Danishefsky, S. J. Carbohydr. Res. 1990, 206, 361.

^{(9) (}a) Gervay, J.; Danishefsky, S. J. Org. Chem. 1991, 56, 548. (b) Barton, D. H. R.; Jaszberenyi, J. Cs. Tetrahedron Lett. 1989, 30, 2619. (10) (a) Tominaga, Y.; Lee, M.; Castle, R. J. Heterocycl. Chem. 1981, 18, 967. (b) Rawal, V. H.; Jones, R. J.; Cava, M. P. J. Org. Chem. 1987, 52,

Scheme IIIa

 a (a) NaH, THF, 0 °C, then 10, 0 °C → reflux, 48%. (b) Thiophosgene, DMAP, pyr, CH₂Cl₂, reflux, then pentafluorophenol, reflux, 95%. (c) n-Bu₃SnH, AIBN, PhH, reflux, 80%. (d) TBAF, THF, powdered 4-Å molecular sieves, reflux, 92%. (e) hν, cat. I₂, air, PhH, rt, 65%. (f) NaH, THF, 0 °C → rt, then SEMCl, rt, 97%. (g) DDQ, CH₂Cl₂, H₂O, rt, 87%. (h) I₂, P(Ph)₃, imidazole, CH₂Cl₂, 0 °C → rt, 87%. (i) DBU, THF, 0 °C → rt, 92%. (j) TBAF, THF, powdered 4-Å molecular sieves, reflux, 82%. (k) *t*-BuOK, THF, MeOH, rt, then I₂, -78 °C → 0 °C, 30%.

followed by iodine in THF-methanol at -78 °C \rightarrow 0 °C.¹¹ Cyclized compound 17 (mp 228-229 °C), whose structure was corroborated by single crystal X-ray analysis, was obtained in 30% yield. The crystallographic data also revealed that the carbohydrate sector of 17 adopts a twist boat conformation in contrast to the chairlike disposition of staurosporine itself.¹² Deiodination of 17 occurred smoothly to give rise to 18 (Scheme IV).¹³ We note that compound 18 contains, in principle, all of the functionality present in staurosporine.

We are now in the process of addressing the delicate matter of interfacing the regiochemical dissymmetries of the unsaturated lactam and carbohydrate sectors. Our continuing goals are the total synthesis of staurosporine as well as the delineation of the relationship between protein kinase inhibition and contour of the carbohydrate sector of the molecule. A broader investigation of the chemistry of exo glycals is also in progress.

Scheme IV

a (a) n-Bu₃SnH, AIBN, PhH, reflux, 99%.

Acknowledgment. This work was supported by NIH Grant HL-25848. We gratefully acknowledge Yale University for a Kent Fellowship (J.T.L.) and the Natural Sciences and Engineering Research Council of Canada for a postdoctoral fellowship (M.G.).

Supplementary Material Available: A chart of reactions including yields and conditions for all transformations reported herein with selected analytical data for 7, 9, 16, 17, and 18 (25 pages). Ordering information is given on any current masthead page.

^{(11) (}a) Barrett, A. G. M.; Bezuidenhoudt, B. C. B.; Gasiecki, A. F.; Howell, A. R.; Russell, M. A. J. Am. Chem. Soc. 1989, 111, 1392. (b) Haudrechy, A.; Sinay, P. J. Org. Chem. 1992, 57, 4142. For other reactions of exo glycals, see: (c) Rajanbabu, T. V.; Reddy, G. S. J. Org. Chem. 1986, 51, 5458. (d) Thiem, J.; Kleeburg, M. Carbohydr. Res. 1990, 205, 333. (e) Haudrechy, A.; Sinay, P. Tetrahedron Lett. 1990, 31, 4035. (f) Noort, D.; Veeneman, G. H.; Boons, G. J. P. H.; van der Marel, G. A.; Mulder, G. J.; van Boom, J. H. Letters 1990, 205. (g) Francesco, F.; Panza, L.; Russo, G. Tetrahedron Lett. 1991, 32, 4035. (h) Maag, H.; Rydzewski, R. M.; McRoberts, M. J.; Crawford-Ruth, D.; Verheyden, J. P. H.; Prisbe, E. J. J. Med. Chem. 1992, 35, 1440.

⁽¹²⁾ Davis, P. D.; Hill, C. H.; Thomas, W. A.; Whitcombe, I. W. A. J. Chem. Soc., Chem. Commun. 1991, 182.

⁽¹³⁾ Kuivila, H. G.; Menapace, L. W. J. Org. Chem. 1963, 28, 2165.